Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries.
نویسندگان
چکیده
The ultra-fast (30C or 2 min) rate capability and impressive long cycle life (>5000 cycles) of Na2Ti6O13 are reported. A stable 2.5 V sodium-ion battery full cell is demonstrated. In addition, the sodium storage mechanism and thermal stability of Na2Ti6O13 are discussed.
منابع مشابه
Na Metal Anode: “Holy Grail” for Room-Temperature Na-Ion Batteries?
Issues such as fossil fuel depletion, environmental pollution, and global warming have triggered much interest in clean/renewable energy sources and the development of electric vehicles (EVs). To address these issues, advanced energy conversion and storage technologies play a crucial role. With relentless efforts in the past decades, Li-ion batteries (LIBs) have become the primary source to pow...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملFew-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries.
Sodium-ion batteries (SIBs) show great potential as alternative energy storage devices for next generation energy storage systems due to the deficiency of lithium resources. MoS2 is a promising anode material for SIBs due to its high theoretical sodium storage capability and large interspace for accommodating sodium ions with a larger ionic radius than lithium ions. However, bulk MoS2 exhibits ...
متن کاملTin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir.
Sodium (Na)-ion batteries offer an attractive option for low cost grid scale storage due to the abundance of Na. Tin (Sn) is touted as a high capacity anode for Na-ion batteries with a high theoretical capacity of 847 mAh/g, but it has several limitations such as large volume expansion with cycling, slow kinetics, and unstable solid electrolyte interphase (SEI) formation. In this article, we de...
متن کاملNaTiO2: a layered anode material for sodium-ion batteries
Lithium-ion batteries are currently the energy storage technology of choice in portable electronic devices and electric vehicles. In recent years, sodium-ion batteries have been actively restudied as a promising alternative because of the abundance of sodium resources and the high capacity cathodes available. But as graphitic carbon can not be used as anode material, as it is in lithium batteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical communications
دوره 49 67 شماره
صفحات -
تاریخ انتشار 2013